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SCIENCE INTRODUCTION 
 
Observations of nature quickly reveal motions that seem to follow an order, and 
the study of those motions led (Newton) to the equations that describe that 
motion e.g.: 
 

F = ma p = mv E = ½ mv2  + V 
 
But there are other equivalent approaches to obtaining equations of motion that 
generalize to modern physics more easily than Newton’s approach.  The 
Hamiltonian approach led to Schrodinger’s Equation, and the Lagrangian 
approach capitalizes on Hamilton’s principle of least action, where the basic 
Lagrangian function is L = (Kinetic Energy – Potential Energy), and the Action, S, 
is given by 

 
This approach generalizes to relativity, and to quantum field theory.  All you have 
to do is figure out the Lagrangian for the situation at hand, and solve the 
equations.  The Lagrangian itself will vary its precise form depending on the 
existence of any of the various fields and forms of energy that we know about. 
 

 
(Lagrangians are taken from Baryon Number Violation beyond the Standard 
Model a Thesis by Bartosz Fornal at California Institute of Technology (2014)) 
 
 



Relativity introduces the idea that the motion we want to describe can look very 
different to observers in different frames of reference.  So we require that our 
theories and equations be the same for all these observers – that they be 
invariant under certain changes in reference frame.  These transformation 
constraints fall into three main groups. 
 
Translations – changes in the location coordinates between frames 
Rotations – changes in orientation between frames 
Boosts – changes in (constant) velocity between frames 
 
The group of these transformations that preserve the Lagrangian and thus the 
laws of physics is called the Poincare Group, and the last two types together 
form the familiar Lorentz Transformations known best from Einstein’s Theory of 
Special Relativity. 
 
Quantum Mechanics (a precursor to Quantum Field Theory) was the recognition 
within the last 100 years that objects have both a particle and a wave nature, that 
recognized that nature at the smallest scales restricts objects to discrete values, 
and that realized that there are limits on the precision with which some physical 
quantities can be known.  However, it has the limitation of being unable to 
address the creation and annihilation of particles… a problem that Field Theory 
addresses.  
 
Also worth mentioning here are our various assumptions about space and time.  
Starting from equations in a Euclidian, 3-dimensional, flat space, Special 
Relativity took us immediately to a 4-dimensional, space-time (Minkowski) 
manifold.  But in a Minkowski manifold, space-time is still assumed to be 
constant, flat, continuous, and differentiable.    These are also the spaces that 
form the backdrop for the Standard Model and Quantum Field Theory 
(sometimes generalized to more than 4 dimensions), but General Relativity, on 
the other hand, introduced the idea of a curved and deformable space-time – a 
Riemannian Manifold.  
 
With all this in mind then, physics has succeeded in building two very successful 
descriptions of the universe on different scales.  Quantum Field Theory and the 
Standard Model describe the very small while General Relativity describes the 
very large. 
 
Quantum Field Theory describes all forces and all particles as excitations of 
several (many) underlying, all-pervasive (gauge) fields.  These fields are the 
fundamental objects.  The fields are quantized, and they have symmetries that 
allow us to put various categories and “flavors” of particles into groups that 
transform according the rules of Group Theory.  Their external and dynamic 
symmetries give rise to conservation laws of momentum, energy, and angular 
momentum.  And their internal symmetries give rise to conservation laws of 
charge and spin.  Note that charge here refers to more than the electric charge.  



It refers to the generators of the various forces which are best described within 
symmetry groups:  Electric charge for QED, U(1), Color charge for QCD, SU(3), 
and Weak-Isospin for Weak Interactions, SU(2). 
 
General Relativity describes space as being deformed by the presence of 
(matter and) energy.  If we view space in this manner, then there are no forces 
necessary to describe the motion of objects in a gravitational field.  It is space 
itself that is curved, and moving objects are simply following the geodesic world 
lines of the curved space. 
 
Now, let’s proceed to search for a visual model that finds the common ground 
between these two successful theories. 
 


